Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast Saccharomyces cerevisiae.

Identifieur interne : 000244 ( Main/Exploration ); précédent : 000243; suivant : 000245

Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast Saccharomyces cerevisiae.

Auteurs : Jessica A. Zinskie ; Arnab Ghosh ; Brandon M. Trainor [États-Unis] ; Daniel Shedlovskiy ; Dimitri G. Pestov ; Natalia Shcherbik [États-Unis]

Source :

RBID : pubmed:30021840

Descripteurs français

English descriptors

Abstract

Stress-induced strand breaks in rRNA have been observed in many organisms, but the mechanisms by which they originate are not well-understood. Here we show that a chemical rather than an enzymatic mechanism initiates rRNA cleavages during oxidative stress in yeast (Saccharomyces cerevisiae). We used cells lacking the mitochondrial glutaredoxin Grx5 to demonstrate that oxidant-induced cleavage formation in 25S rRNA correlates with intracellular iron levels. Sequestering free iron by chemical or genetic means decreased the extent of rRNA degradation and relieved the hypersensitivity of grx5Δ cells to the oxidants. Importantly, subjecting purified ribosomes to an in vitro iron/ascorbate reaction precisely recapitulated the 25S rRNA cleavage pattern observed in cells, indicating that redox activity of the ribosome-bound iron is responsible for the strand breaks in the rRNA. In summary, our findings provide evidence that oxidative stress-associated rRNA cleavages can occur through rRNA strand scission by redox-active, ribosome-bound iron that potentially promotes Fenton reaction-induced hydroxyl radical production, implicating intracellular iron as a key determinant of the effects of oxidative stress on ribosomes. We propose that iron binding to specific ribosome elements primes rRNA for cleavages that may play a role in redox-sensitive tuning of the ribosome function in stressed cells.

DOI: 10.1074/jbc.RA118.004174
PubMed: 30021840
PubMed Central: PMC6139556


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast
<i>Saccharomyces cerevisiae</i>
.</title>
<author>
<name sortKey="Zinskie, Jessica A" sort="Zinskie, Jessica A" uniqKey="Zinskie J" first="Jessica A" last="Zinskie">Jessica A. Zinskie</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Arnab" sort="Ghosh, Arnab" uniqKey="Ghosh A" first="Arnab" last="Ghosh">Arnab Ghosh</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Trainor, Brandon M" sort="Trainor, Brandon M" uniqKey="Trainor B" first="Brandon M" last="Trainor">Brandon M. Trainor</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Graduate School for Biomedical Sciences, Rowan University, Stratford, New Jersey 08084.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Graduate School for Biomedical Sciences, Rowan University, Stratford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shedlovskiy, Daniel" sort="Shedlovskiy, Daniel" uniqKey="Shedlovskiy D" first="Daniel" last="Shedlovskiy">Daniel Shedlovskiy</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Pestov, Dimitri G" sort="Pestov, Dimitri G" uniqKey="Pestov D" first="Dimitri G" last="Pestov">Dimitri G. Pestov</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shcherbik, Natalia" sort="Shcherbik, Natalia" uniqKey="Shcherbik N" first="Natalia" last="Shcherbik">Natalia Shcherbik</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and shcherna@rowan.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30021840</idno>
<idno type="pmid">30021840</idno>
<idno type="doi">10.1074/jbc.RA118.004174</idno>
<idno type="pmc">PMC6139556</idno>
<idno type="wicri:Area/Main/Corpus">000228</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000228</idno>
<idno type="wicri:Area/Main/Curation">000228</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000228</idno>
<idno type="wicri:Area/Main/Exploration">000228</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast
<i>Saccharomyces cerevisiae</i>
.</title>
<author>
<name sortKey="Zinskie, Jessica A" sort="Zinskie, Jessica A" uniqKey="Zinskie J" first="Jessica A" last="Zinskie">Jessica A. Zinskie</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Arnab" sort="Ghosh, Arnab" uniqKey="Ghosh A" first="Arnab" last="Ghosh">Arnab Ghosh</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Trainor, Brandon M" sort="Trainor, Brandon M" uniqKey="Trainor B" first="Brandon M" last="Trainor">Brandon M. Trainor</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Graduate School for Biomedical Sciences, Rowan University, Stratford, New Jersey 08084.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Graduate School for Biomedical Sciences, Rowan University, Stratford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shedlovskiy, Daniel" sort="Shedlovskiy, Daniel" uniqKey="Shedlovskiy D" first="Daniel" last="Shedlovskiy">Daniel Shedlovskiy</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Pestov, Dimitri G" sort="Pestov, Dimitri G" uniqKey="Pestov D" first="Dimitri G" last="Pestov">Dimitri G. Pestov</name>
<affiliation>
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Cell Biology and Neuroscience and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shcherbik, Natalia" sort="Shcherbik, Natalia" uniqKey="Shcherbik N" first="Natalia" last="Shcherbik">Natalia Shcherbik</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Department of Cell Biology and Neuroscience and shcherna@rowan.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Oxidants (administration & dosage)</term>
<term>Oxidants (pharmacology)</term>
<term>Oxidative Stress (MeSH)</term>
<term>RNA, Fungal (metabolism)</term>
<term>RNA, Ribosomal (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Ribosomes (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN fongique (métabolisme)</term>
<term>ARN ribosomique (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Oxydants (administration et posologie)</term>
<term>Oxydants (pharmacologie)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Relation dose-effet des médicaments (MeSH)</term>
<term>Ribosomes (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Stress oxydatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Oxidants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Iron</term>
<term>RNA, Fungal</term>
<term>RNA, Ribosomal</term>
<term>Reactive Oxygen Species</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Oxidants</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Oxydants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN fongique</term>
<term>ARN ribosomique</term>
<term>Espèces réactives de l'oxygène</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Oxydants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dose-Response Relationship, Drug</term>
<term>Hydrolysis</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Hydrolyse</term>
<term>Relation dose-effet des médicaments</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stress-induced strand breaks in rRNA have been observed in many organisms, but the mechanisms by which they originate are not well-understood. Here we show that a chemical rather than an enzymatic mechanism initiates rRNA cleavages during oxidative stress in yeast (
<i>Saccharomyces cerevisiae</i>
). We used cells lacking the mitochondrial glutaredoxin Grx5 to demonstrate that oxidant-induced cleavage formation in 25S rRNA correlates with intracellular iron levels. Sequestering free iron by chemical or genetic means decreased the extent of rRNA degradation and relieved the hypersensitivity of
<i>grx5</i>
Δ cells to the oxidants. Importantly, subjecting purified ribosomes to an
<i>in vitro</i>
iron/ascorbate reaction precisely recapitulated the 25S rRNA cleavage pattern observed in cells, indicating that redox activity of the ribosome-bound iron is responsible for the strand breaks in the rRNA. In summary, our findings provide evidence that oxidative stress-associated rRNA cleavages can occur through rRNA strand scission by redox-active, ribosome-bound iron that potentially promotes Fenton reaction-induced hydroxyl radical production, implicating intracellular iron as a key determinant of the effects of oxidative stress on ribosomes. We propose that iron binding to specific ribosome elements primes rRNA for cleavages that may play a role in redox-sensitive tuning of the ribosome function in stressed cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30021840</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>293</Volume>
<Issue>37</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast
<i>Saccharomyces cerevisiae</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>14237-14248</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA118.004174</ELocationID>
<Abstract>
<AbstractText>Stress-induced strand breaks in rRNA have been observed in many organisms, but the mechanisms by which they originate are not well-understood. Here we show that a chemical rather than an enzymatic mechanism initiates rRNA cleavages during oxidative stress in yeast (
<i>Saccharomyces cerevisiae</i>
). We used cells lacking the mitochondrial glutaredoxin Grx5 to demonstrate that oxidant-induced cleavage formation in 25S rRNA correlates with intracellular iron levels. Sequestering free iron by chemical or genetic means decreased the extent of rRNA degradation and relieved the hypersensitivity of
<i>grx5</i>
Δ cells to the oxidants. Importantly, subjecting purified ribosomes to an
<i>in vitro</i>
iron/ascorbate reaction precisely recapitulated the 25S rRNA cleavage pattern observed in cells, indicating that redox activity of the ribosome-bound iron is responsible for the strand breaks in the rRNA. In summary, our findings provide evidence that oxidative stress-associated rRNA cleavages can occur through rRNA strand scission by redox-active, ribosome-bound iron that potentially promotes Fenton reaction-induced hydroxyl radical production, implicating intracellular iron as a key determinant of the effects of oxidative stress on ribosomes. We propose that iron binding to specific ribosome elements primes rRNA for cleavages that may play a role in redox-sensitive tuning of the ribosome function in stressed cells.</AbstractText>
<CopyrightInformation>© 2018 Zinskie et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zinskie</LastName>
<ForeName>Jessica A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Cell Biology and Neuroscience and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Arnab</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Cell Biology and Neuroscience and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trainor</LastName>
<ForeName>Brandon M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Cell Biology and Neuroscience and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Graduate School for Biomedical Sciences, Rowan University, Stratford, New Jersey 08084.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shedlovskiy</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Cell Biology and Neuroscience and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pestov</LastName>
<ForeName>Dimitri G</ForeName>
<Initials>DG</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Cell Biology and Neuroscience and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shcherbik</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Cell Biology and Neuroscience and shcherna@rowan.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4V88</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM114308</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C528773">Grx5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016877">Oxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016877" MajorTopicYN="N">Oxidants</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fenton reaction</Keyword>
<Keyword MajorTopicYN="Y">RNA</Keyword>
<Keyword MajorTopicYN="Y">RNA degradation</Keyword>
<Keyword MajorTopicYN="Y">cell death</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">iron</Keyword>
<Keyword MajorTopicYN="Y">iron homeostasis</Keyword>
<Keyword MajorTopicYN="Y">iron metabolism</Keyword>
<Keyword MajorTopicYN="Y">oxidative stress</Keyword>
<Keyword MajorTopicYN="Y">reactive oxygen species (ROS)</Keyword>
<Keyword MajorTopicYN="Y">ribosome</Keyword>
<Keyword MajorTopicYN="Y">yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30021840</ArticleId>
<ArticleId IdType="pii">RA118.004174</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA118.004174</ArticleId>
<ArticleId IdType="pmc">PMC6139556</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Death Differ. 2000 Oct;7(10):994-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2017 Jul;773:274-281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28927535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Apr 20;45(7):3634-3642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28334877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 29;109(22):8417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22586079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 Jan;15(1):14-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2013 Jun;5(6):525-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23695635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Nov 10;292(45):18469-18485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28939771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 May 25;149(5):1060-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22632970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2012 Jun 05;19(6):560-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22664983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Aug;83(15):5469-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3090544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2017 Apr;33(4):75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28315258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Cell Biol. 2008 Jun;Chapter 22:Unit 22.11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18551418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Aug 19;44(14):6840-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2015 Jul;21(7):1240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25995445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jan 22;9(1):324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Oral Pathol Med. 2017 May;46(5):332-339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27658048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Jul 30;1399(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9714716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Oct 5;171(2):273-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28985560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1948 Nov;70(11):3596-3600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18102899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2014 Dec;22:111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25460804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2012 Dec;19(12):1972-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22767185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Dec 1;137(1-2):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6317379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Jan 2;315(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8416804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12138088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2013 Dec;14(12):1209-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24102742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):292-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Mar;41(3):274-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26725301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Dec;26(23):8992-9002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17000775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2017 Dec 2;14(12):1722-1726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28692404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1967 Aug 2;89(16):4176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6045609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1998 Mar;5(3):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 8;274(2):962-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9873038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Apr 29;240(4852):640-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2834821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e38024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22701543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2015 Jan 13;34(2):154-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25468960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2000 Nov;5(5):415-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11256882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Sep 12;17(17):6915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2780314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2003 Mar 1;101(5):1996-2000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12406866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 16;334(6062):1524-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22096102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 20;287(17):13541-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Mar 25;259(6):3620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6323433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Sep 1;40(17):8759-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22730286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1976 May;3(5):1139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">181730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Mar;19(3):865-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 Nov 15;57(3):481-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15382238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2014 Feb 23;2:535-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24634836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Feb 28;46(4):1945-1957</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29309687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Mol Biol Transl Sci. 2009;85:369-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19215777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 30;9(10):e111585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25356756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 May;36(9):2874-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18385160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Feb;17(2):291-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21173199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):20978-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):503-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2006 Apr 1;351(1):149-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Jul;1783(7):1354-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Jul;26(13):4818-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2006 May;31(5):705-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16770743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Jan 10;20(2):372-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2004 Oct 1;13(19):2279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15282205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2004;5(4):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 1995 Dec;82-83:969-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8597169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Div. 2016 Jul 29;11:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27478489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Oct 1;441(1):18-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23800830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Jul 21;245(4915):276-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2501870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cancer. 2016 Feb 24;16:146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26911141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Jul 15;5(4):e01426-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25028428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ghosh, Arnab" sort="Ghosh, Arnab" uniqKey="Ghosh A" first="Arnab" last="Ghosh">Arnab Ghosh</name>
<name sortKey="Pestov, Dimitri G" sort="Pestov, Dimitri G" uniqKey="Pestov D" first="Dimitri G" last="Pestov">Dimitri G. Pestov</name>
<name sortKey="Shedlovskiy, Daniel" sort="Shedlovskiy, Daniel" uniqKey="Shedlovskiy D" first="Daniel" last="Shedlovskiy">Daniel Shedlovskiy</name>
<name sortKey="Zinskie, Jessica A" sort="Zinskie, Jessica A" uniqKey="Zinskie J" first="Jessica A" last="Zinskie">Jessica A. Zinskie</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Trainor, Brandon M" sort="Trainor, Brandon M" uniqKey="Trainor B" first="Brandon M" last="Trainor">Brandon M. Trainor</name>
</region>
<name sortKey="Shcherbik, Natalia" sort="Shcherbik, Natalia" uniqKey="Shcherbik N" first="Natalia" last="Shcherbik">Natalia Shcherbik</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000244 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000244 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30021840
   |texte=   Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30021840" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020